首页> 外文OA文献 >Spin quantum computation in silicon nanostructures
【2h】

Spin quantum computation in silicon nanostructures

机译:硅纳米结构中的自旋量子计算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Proposed silicon-based quantum-computer architectures have attractedattention because of their promise for scalability and their potential forsynergetically utilizing the available resources associated with the existingSi technology infrastructure. Electronic and nuclear spins of shallow donors(e.g. phosphorus) in Si are ideal candidates for qubits in such proposalsbecause of their long spin coherence times due to their limited interactionswith their environments. For these spin qubits, shallow donor exchange gatesare frequently invoked to perform two-qubit operations. We discuss in thisreview a particularly important spin decoherence channel, and bandstructureeffects on the exchange gate control. Specifically, we review our work on donorelectron spin spectral diffusion due to background nuclear spin flip-flops, andhow isotopic purification of silicon can significantly enhance the electronspin dephasing time. We then review our calculation of donor electron exchangecoupling in the presence of degenerate silicon conduction band valleys. We showthat valley interference leads to orders of magnitude variations in electronexchange coupling when donor configurations are changed on an atomic scale.These studies illustrate the substantial potential that donor electron/nuclearspins in silicon have as candidates for qubits and simultaneously theconsiderable challenges they pose. In particular, our work on spin decoherencethrough spectral diffusion points to the possible importance of isotopicpurification in the fabrication of scalable solid state quantum computerarchitectures. We also provide a critical comparison between the two mainproposed spin-based solid state quantum computer architectures, namely, shallowdonor bound states in Si and localized quantum dot states in GaAs.
机译:提出的基于硅的量子计算机体系结构引起了人们的注意,因为它们对可扩展性的承诺以及潜在地协同利用与现有Si技术基础架构相关的可用资源的潜力。 Si中的浅施主(例如磷)的电子和核自旋是此类提案中量子位的理想候选者,因为它们与环境的相互作用有限,因此自旋相干时间长。对于这些自旋量子位,经常调用浅施主交换门来执行两个量子位操作。我们在这篇综述中讨论了一个特别重要的自旋退相干通道,以及能带结构对交换门控制的影响。具体来说,我们回顾了由于背景核自旋触发器而导致的供体电子自旋谱扩散的工作,以及硅的同位素纯化如何能够显着延长电子自旋相移时间。然后,我们回顾了在简并的硅导带谷存在下供体电子交换耦合的计算。我们证明了当给体构型在原子尺度上改变时,谷值干扰会导致电子交换耦合的数量级变化。这些研究表明,硅中的给体电子/核自旋具有巨大的潜力,可能成为量子位的候选者,同时也带来了相当大的挑战。特别地,我们对通过光谱扩散的自旋退相干的研究指出了同位素纯化在可扩展固态量子计算机体系结构制造中的重要性。我们还提供了两种主要的基于自旋的固态量子计算机体系结构之间的关键比较,即Si中的浅施主结合态和GaAs中的局部量子点态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号